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Abstract

This study is concerned with certain aspects of the theory of stabil-
ity of continuous, one-dimensional, nonconservative elastic systems. In
particular, it is pointed out that several types of such systems m#y be
described analytically by the same non-self-adjoint boundary value problem
involving a complex differential equation of motion. The imaginary part
of the complex force parameter is of interest because it may be associated
with a destabilizing effect, the loss of stability being due primarily to
the real part of the complex force. The physical origin of the imaginary
part may be associated with velbcity-dependentvforges (such as viscous
damping, Coriolis acceleration and other gyroscopic forces), and certain
other forces which need not be velocity-dependent, e.g., a torque which
- remains in the plane of deformation of a cantilevered bar,

Several general theorems applicable to the class of systems selected
for study are established and an example serves to illustrate various

features of this class,



Introduction

An important group of proublems in the field of applied mechanics
deals with the stability analysis of elastic systems subjected to nom-"
conservative forces, In this group, nonconservative forces are defined as
being nondissipative and not derivable from a potential. Tangential (or
"follower") forces are examples of loads that are nonconservative; such
forces have also been termed circulatory by Ziegler [1,2]*. It is known
by now that a direct procedure for stability analysis of such systems con-
sists of obtaining the variational equations of Poincaré by assuming
infinitesimal deviations from the undisturbed equilibrium position, and in
studying then the subsequent ﬁotion {3]. The forces which act on the sys~
tem may or may not depend on timelexplicitly. In the following, however,
they are taken to be independent of time (autonoméus system), Of course
they will be functions of deformations and time rate of change of dis-
placements of the system. Therefore, when a dependence eimt in time is
assumed, attention is focused on determining the property of the fre-
quency .

Small, free, undamped oscillations of spatially one-dimensional con-
servative systems are governed by self-adjoint partial differentiai equa-

tions of motion, so that the frequencies ® =1,2,...y2, are all real,

j’j
When nonconservative forces of the type just mentioned are present, how-

ever, the governing equation of motion is non-self-adjoint so that the

solutions for w, may be complex. Thus, the location of wj in the complex

i

*
Numbers in brackets designate References at end of paper.



iw-plane will determine stability of such systems., This criterion forms
the basis of the analysis presented in the sequel,

That group of problems in which the forces (or moments) are idealized
to be of the follower type is, mathematically, relatively simple, It is
recognized, however, that in many problems the analysis will have to
include terms originating from Coriolis acceleration or from other gyro=~
scopic effects. Such terms may be recognized as being velocity-dependent
forces, and in the equations describing small oscillations for stability
analysis they occur as mixed time and space derivatives (the order of the
‘former is generally odd). As a consequence, the resulting ordinary dif-
ferential equation (in spatial coordinate) will have terms whose coeffici-
ents are imaginary. For instance, the governing equations for a canti-
levered elastic pipe conveying fluid possess such a feature, and this
problem was considered in [4].

The stability analysis of elastic systems moving relatively to a sur-
rounding fluid is another instance when one has to deal with differential
equations that have terms with complex coefficients, 1In this case the ex-
pressions for the forces exerted by the fluid on the elastic system are
not completely specified a prioxi; rather, they are determined in the
course of solving the problem. Examples belonging to this class include
the flu;ter analysis of hydrofoils, airplane wings, and elastic panels
[3,5-9].

Further, it is often necessary to consider internal damping in the
material, One way to account for such damping is to select some suitable

form of a linear viscoelastic stress-strain reldtionship (a common form of



which may consist of a certain combination of linear springs and dashpots
such that the relation is obtained in the form of linear differential
operators that act on stress and strain [10]. The terms in the equation
of motion that arise due to the strain energy of the elastic system,
therefore, change so that they have complex coefficients when dependence
on time is assumed to be of the form eiwt, as discussed earlier., Such
considerations, which give rise to several interesting phenomena, were
introduced in the studies referred in [4,9] by using viscoelastic mater-
ial, a common form of which is given by the Kelvin model,

Finally, there are certain position-dependent (but velocity-indepen-
dent) forces (e.g., a torque which remains in the plane of deformation of
a cantilevered bar as in Nikolai's problem [11]) which also give rise to
complex terms in the differential equation of motion, in a manner similar
to velocity-dependent forces, as discussed before,

It is, therefore, desirable to study in a general way some of the
properties of the stability of elastic systems subjected to such ‘complex"
forces. The term ""complex'" is used here for want of a better designation
of the class of forces in question, and it is stressed again that their
physical origin can be quite diverse, Yet, since their mathematical des~
cription can be made idewntical, they obviously must possess some common
properties, 1In particular, as will be showr in the. sequel, a sufficiently
small imaginary part of the complex force parameier is asscciated with a
destabilizing effect, the loss of stability being due primarily to the
real part of the complex force, The destabilizing effect of viscous damp-

ing on the stability of a linear, discrete, nonconservative system was




first discovered by Ziegler [1,2], and later several authors [3,4,9,12-15]
explored this interesting phenomenon in more detail. In the present study
several general theorems concerning the destabilizing effects associated
with small imaginary paft of complex force are established, and by way of
an example a more general form of Nikolai's problem is discussed in the

perspective of these results,

Some General Properties of "Complex" Forces

Consider the following form of an ordinary linear differential equa-
tion:‘

P(u) + (v)Q(u) = 0PECu 5 4= (-1)F 1y
where v is a positive parameter which denotes the order of magnitude, u is
a complex function of a real variable x, w is the circular frequency of

small oscillation, and £(x) is a known continuous function of x; and

N dn
P(u) = ) a (x) =
“ ;g n ax®

(2)

N n
- du
Q(u) = B (x) —
2; n dxn

At the end points of the interval a £ x < b in which (1) is valid, the N

boundary conditions are

L (u) 0, at x = a ; n 0,1,000sT
L

3)

Ln(u) r+1 ,I‘+2 s¢en ,N’1

(]
o
o
(2]
"

]
o
=]

"

where the expressions Ln(u) are of the form
N-1 o

Li(w) = Z {“jn + (e ;—“ﬁ : J = 0,1, 000,N-1 %)
n=0 x



njn and ejn are real quantities characterizing certain properties (such as
stiffness or inertia) at the two end points.

It will be assumed that the coefficients £(x), an(x), and Bn(x), are
continuous, single-valued, real functions of x throughout the interval
a < x < b, and o, does not vanish at any point of the interval., Also,

N

some of o, Bn’ njn and © n will be assumed single-valued continuous func-

3
tions of F, which denotes the magnitude of loading and is a real positive
parameter. Eq. (1) has at most N linearly independent solutioms Un(x);
n=1,2,...,N, which will be continuous functions of the coefficients

Qyn + ian) and w. The dependence of Un(x) on an(x) and Bn(x) will be
indicated merely by parameters @ and Bn’ respectively, As mentioned

above, Bn stands for the imaginary part of the complex forces. Then, the

most general solution u can be written in a functional form as

- N
u = 219‘“‘11111(>c,(c::]rl + 198 ),0) ; n=1,2,...,N (5)
m=

where Am are N arbitrary complex constants.

Substituting the solution given by Eq. (5) into the expressions for
boundary conditions (3), a set of N linear, homogeneous, algebraic equa-
tions in Am is obtained, the coefficients of which are functions of
(@ + ivB ), w, and (1, + ive, ). A nontrivial solution of A_ exists if

n n jn Jjn m
and only if the determinant, denoted by K} of the coefficients of A.m is

zero, which is expressed in a functional form as follows:

A= A((an + 1vB )0, (M + 1"°jk)> =0; 3ok = 01,000, N-1 o

n= 1 ,2,...,N

It is noted that the operator (P + ivQ), with the boundary conditions




(3), does not have a singularity for v = 0 and has continuous dependence
on v, Hence, by setting v = 0 in the function K; another function denoted
by A(an,w,ﬂjk) is obtained which corresponds to the case when the imagin-
ary parts of complex forces vanish. The heart of stability analysis of
noncoqservative systems in the absence of imaginary parts of complex
forces lies in studying the roots of A. This will be explained briefly
below.

The parameter F represents terms in the operator P and boundary con-
ditions (3) which are caused by external loadings. When F is identically
zero, the problem reduces to finding the natural frequencies of the elas-
tic system. For this case the operator P, with respect to boundary con-
ditions that relate to free oscillation, becomes self-adjoint, such that
the eigenfrequencies mj; j=1,2,...,9, corresponding to the zeros of

A(an,(l),'n 0 ’ j’k = 0,1 :-0"N'1

) N =
ik r=0 7

1,2,...,N

]

n
are all real. It will be assumed that they are distinct and that they
remain nonzero in order to eliminate divergence. If F is sufficiently
small, these roots wj of A = 0 are still nonzero and real, As F is in-
creased, at least two of wj approach each other and at a certain value of
F they coalesce., This is, obviously, a very stringent requirement on the
character ;f the external loadings and is mathematically known to exist
for several problems in this field {3]. If F is increased beycnd this
value, at least two of the roots of the above equation are nonzero, com-
plex conjugates of each other. Hence an unstable state exists in which

the amplitudes of oscillations increase exponentially (flutter). The



minimum value of F, say Fe, for which only one pair of real w satisfies
simultaneously the following equations, will correspond to flutter:;
R (8)
S @M =0
We return now to the case of nonzero v. At this point it is important
to investigate the dependence of Bn and ij on w. It may be pointed out
that in case of velocity-dependent forces these terms are associated with
odd time derivatives so that Bn(-w) = -Bn(w) and Bjk(-w) = -ij(w). On the
other hand, the following theorem is proved below:
Theorem I. 1If each Bn and ejk is a symmetric function of w (or inde-
pendent of w) such that Bn(-w) = Bn(w) and Bjk(-w) = Sjk(w), then
the system is unstable for any nonvanishing magnitude of the load

parameter F,

Proof. Let w = o + ivB and expand A from (6) in powers of v to obtain

K((ai—iva),ﬁyn + ian),Cn,k + ivejk)> = A(a,an,njk) + (iv)

N N-1 N-1 '
+ZSA- +) ZaM ®, ]*%ﬁ[ga B +Z Zaaaa Bl
n=1 j=0 k=0 m=1 n=1

N-1 N-1 N-1 N-1

+223aaa LRI zanazank mn® 3k

m=0 n=0 j=0 k=0

N-1 N-1 N N-1 N-1 2
, Y 2, P o S A _aa
L L an KX Wt L L L 3 M, o ikl
j=0 k=0 n=1 j=0 k=0 * J
+00)+....=0 9)

If we retain orders of v up to O(v), then the proof of the stated theorem




follows immediately., In fact it is meaningful only to show that the system
is unstable for vanishing F, Therefore, neglecting 0(v®) and higher, the

following is obtained:

N-1 N-1

Maa M) + (v) [ g + Sor B * . (10)
3 L& 3 ik %

Separating the real and imaginary parts and equating them to zero, the fol-

lowing results:

and
R N N-1 N-1
A ——-—
3 bt B’“ZZanka 0
n=1 j=0 k=0
so that
N ~ N-1 N-1
dA _O0A
Z 30 Pnt Z M. Ok
o= 1 j=0 k=0 Jk (11b)
B=- FY)
dor

It has been remarked before that A represents the frequency equation of
the systems (1) and (3) for the special case of v = 0, Under such a circum-
stance, then, the systems (1) and (3) will give rise to the same solution

iwt -iwt .
Aw,x 7M. ) = A(-w,@_,M., ) with respect to e or e because every time
n’'jk n’ 'jk
W occurs, it is associated with inertia forces, so that the derivatives with
respect to time t are even. Therefore, the coefficients of B_ and eik, as
n ik
well as the denominator 3A/d¢ in Eq. (11b), are symmetric functions of w;

and if the requirement of the stated theorem is fulfilled, then B obtained

from (11b) is sign invariant (let B be positive) with respect to zw. As a
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result the solution for frequency w takes the following form:

+w = +(o¢ + ivB) (12)
where o is the solution of (11a) and B is obtained from (llb) after subéti—
tution of o. Relation (12) is, obviously, true for any 0 < F < Fe. Conse~
quently, it is not difficult to realize that one of the solutions ei:iwt will
correspond to oscillatory motion with exponentially increasing amplitude
(flutter) for any nonvanishing magnitude of F. This concludes the proof.

Nikolai's problem is an example of a physical system that illustrates
the above theorem. It may, however, be mentioned that in contrast to the
requirement of the statement in Theorem I, there may be a case when not all
of Bn and ejk are symmetric functions w. Then the critical value of F will
be determined by investigating the sign of B given by (11b), together with
the roots of (lla); and in general there will be a definite nonzero value of
critical F. 1If in Nikolai's problem viscous damping forces are included,
then all the features mentioned before are exhibited., This illuminating
case will be discussed by way of an example at the end of the present study.

What has been presented above is a sufficient condition on the charac-
ter of the imaginary parts of complex forces such that they are self-excit-
ing, i.e., they have in a certain sense the property of negative damping.
In the following, however, it will be assumed that no Bn or ejk is a sym-
metric function in the sense mentioned, Therefore, when F vanishes it will

-

be assumed that all the positive roots w, of Eq. (&) are located in the left
half of the imaginary axis in the complex iw-plane. As F is increased at

least one of these roots wj approaches the imaginary axis and for a certain

value of F Eq. (6) yields one real root, say w_ . If F is increased beyond



11

this critical value, one of the roots of (6) becomes complex with negative
imaginary part and, therefore, the amplitude of oscillation increases expon~
entially with time (flutter). Consequently, the minimum value of F, say Fd’
which admits a nonzero positive real root W, of (6), corresponds to flutter,
With these preliminaries the following thecrems can be established:
Theorem II. Let v be a sufficiently small number, such that terms of
0(v?) and higher can be neglected in comparison with those of

O(v), then

Fd < Fe

Proof, Let w = ¢ + ivB and obtain &s befcre the following (neglecting

0(v®) and higher):

Aow,an,njk) =0 (13a)
N N-1 N-1
3 Pn EZ ZZ an
B = - n=1 é;é k=C (13b)
da

It should be noted that 7or F = 0, B is a positive quantity, so that when
t = o the system returns to its eg:ilibrium state,

According to what has been assunad befcre, namely, that A and 3A/3¢ do not
vanish simultaneously for ¥ <« fe, it follows that 8A/3« does not change sign
in this range of F, such that & is a positive quancity that satisfies (13a).

S P -
Ly if the n

cr
m
[
n
o
po
Q

Therefore, @ can merator in {13b), namely,

~ s

~1=

A . : - ¥ —_ s
S—— E: Ez ejk , vanishes, Hence, Fd =F <« Fe will cause

1
—

n

flutter only if the following equations are satisfied simultaneously:
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A(a,an,njk) =0 (13a)
i . Nf N-1 \
A
o 3 —_—f . =0 (13c)
o ) Kk
=l B 320 k=0 My 3

Now, assume that for F < Fe, the expression (13b) does not vanish,
But, for F > Fe at least two roots of Eq. (13a) are conjugate complex of
each other, say @’ + iB’, and the denominator of the expression (13b),
namely, 3dA/3¢, changes sign, so that B, for this value of a’ + ip’, is a
negative quantity, Therefore, when F > Fe, the following expression for w
is obtained:

w g = o' £ 1B’ + ivB (14)

where B is a negative quantity and is given by

N N-1 N-1
L %ttt ) ) ow
ad an Jk
n=1 j=0 k=0 3K
B = - a_A (15)
da =o'+ ip’
Thus Fd =F > Fe is associated with an amplitude which increases exponen-

tially with time (flutter).

In the above it has been shown that when the inequality F > Fe is
satisfied, the system loses stability by flutter., The case of equality,
namely, Fd =F = Fe’ was not discussed. At this value of F = Fe, 34 /3
vanishes for the double root of (13a). However, if (13c) is satisfied at
the same time, the criterion that the boundary of stability is determined by
a real root of (6) is fulfilled. The condition of equality is met only in

this case. Therefore,

N-1 N-1

Corollary, If the term[ z s + jzo kz s jk] is
£ -



13

proportional to 3A/3da, the destabilizing effect of sufficiently
small complex forces is eliminated, _

Note that if (13c) does not vanish together with 3A/de«, B becomes inde-
terminate and the method of retaining orders only up to O(v) seems to be in-
adequate, Higher order terms must then be retained in the analysis.

Now, retaining orders up to O(vg) in the expansion (9), the following
theorem is proved:

Theorem III. Let v be finite such that O(v®) and higher can be neg-

lected in comparison with 0(v®) and lower. Then

FdsFe

if the following relation holds:

N-1 N-1 N-1 N-1

DI ST M e

m=1 n=1 m=0 n=0 j=0 k=0 Jk

N
Z Z z nejk g::f

Proof. Neglecting O(V®) and higher in (9), and equating real and

mn Jk

imaginary parts, separately, to zero, the following is obtained:

N-1 N-1
vg 2A 5
Mava M) - 752 B - z aaaa BV ) ) am aa 8 1B
n=1 j=0 k=0
5 N N s N 1 N‘_v_‘1 N\:_‘1 NY."1 82
vVisT v S A__
'ZLZZaaaa +LLLLanan ®an® jk
m={ n=q ® D m=0 n=0 j=0 k
N N-1 N-1 R
<A
+2z 98 54 =0 (16)
. adna'ﬂjk an]
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and

N N-1 N-1

B*ZZankjk

n=1 j=0 k=0

B = - @A (13b)

o

Replacing the term in brackets in Eq. (16) by (3°A/36P )8, as assumed above,

the following results:

N N-1
NCHCR PR 5’; 8% _ 28 [a% (Z 'g— By + JZ Z M Jkﬂ =0

Using (13b), the above equation reduces to

Ao M, i) v? :—Z%BE - v [5% (-B %)] =0

Therefore,

|
<o

A(ozoz 'nk)—

which is identical to Eq. (13a). Thus, by virtue of the relation assumed in
Theorem III, for finite v, Egqs. (13b) and (16) represent exactly the con-
ditions discussed in Theorem II, and hence the proof follows as before.

An important question in this context arises: which of the two types of
paths shown in Fig., 1 is followed by the solution of Eq. (6)? Path A
denotes stability, whereas B is destabilizing with an increase in v. For
finite v, so that orders up to O(vz) are considered, Eqs. (13c) and (16) can
be solved simultaneously to give a relation of the typé F = F(v). Then, the
answer is given by studying the sign of d®F/dv®. Obviously, Theorem IIL
signifies transition from path A to B, or vice versa. Results similar to B
have been obtained in analyzing the bending-torsional flutter of a swept

wing reported in [9]., It has been found that an increase in the magnitude
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of the parameter associated with damping in shear results in a decrease of

the flutter parameter denoting speed.

Example ~-- Stability of a Cantilevered Bar Subjected

to a Partially Following Twisting Moment

Consider small motion of a uniform cantilevered bar, shown in Fig, 2,
whose moment of inertia I is the same about any axis, The stress-strain
relation of the material is expressed as

6 = Ee + T %%
where E is the modulus of elasticity and T is the coefficient of viscosity.
Using complex deflection w = u + iv, where u and v are displacements along x
and y axes (Fig. 2), respectively, the equation of motion of the bar sub-
jected to a twisting moment which remains in the plane of deformation and

partially follows the slope of the end during motion, is given by

v v ®w 2w
- —_— i =2 — = 1
EI 3.2 + N1 3245¢ iL 33 + m Y 0 (17)

with the following boundary conditions:

w o= %% =0, at z =0
3w %w . ow _ =
EI-a—z—g-+nI'é"z—2—a-E-1(1-K)LBz—O, at z =4 (18)
3w d*w 2w
E1 S¥ 4+ M1 -in<¥ =g, at z =2
dz8 " 3233t 1L dz?

where L is the twisting moment which always lies in the plane of deformation
and rotates by an angle which is » times the angle of rotation of the free-

end section, m is the mass of the bar per unit length, and £ is the length
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of the bar.* To consider the effect of external damping, a term k(3w/3t)

may be added to Eq. (17). Introducing the following dimensionless param-

eters,
@ v
Eqs. (17) and (18) take the forms
-:—;% 6’-3—2233’;-1M’::—‘;+Y’%%+:%=0 (20)
w = %% o, at € =0
%2—3+6'.82:§T-1M’§Z—‘;’=0, at g =1

To investigate-stability as affected by small force parameters, the
following notation is introduced:

8’ =v6 , M =vM, and Y
in which v denotes the order of magnitude (as discussed before), and 6, F
and Y are of the order of unity, The solution of Eq. (20) is taken in the
form w(g)eiin; the stability of the bar will be determined by the behavior

of w. The nature of w will depend upon the nontrivial solutions of the

*
The result for the special case of n = 0, namely, that the elastic
cantilevered bar is unstable for any nonvanishing magnitude of the twisting

moment, was presented by Trosch [17]. See also Ref. [3].
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following equation in ¥ (§):
&y o, d I 2 =
ag* + vaba—g%- 1\;Md—§-?;-w# + ivavy = 0 : (22)

together with the following boundary conditions:

=-gl= =
| ] ae o, at € =0
24 2
ggg’& ivwd §Eg - 1vM(1 - n) gg-= o, at € =1 (23)
k] 2
%iivwé%-i\m:—g%=0, at € =1

Eq. (22) is a fourth order ordinary, linear, homogeneous, differential
equation with constant complex coefficients. Therefore, instead of writing
a general solution for § in terms of the coefficients of different terms in

(22), it may also be written as
4 x €
o) A (24)
3=
where Aj are arbitrary constants and Tﬁ are the roots of the following
characteristic equation:
— )
(1 £ ivwd)A - ivMA - (w2 F ivev) =0 (25)
Substitution of (24) into (23) results in the following system of linear

homogeneous equations in Aj:

4
z Ay =0 (26a)
3=1

A, =0 (26b)

™~
>1
Cte
.
i

L
1l
—-
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4 -

_ v
Z {(1 + ivwé))\; - ivM(1 - n))\j} eda =0 (26¢)
=
C X
z {(1 + iwu&)i? - ivu'ij} el A =0 (264)
3=t

For a nontrivial solution, the determinant of the coefficients of A, in

(26) should be zero, which is represented as
A = -A_(Kj,ﬁ + ivwd),ivM(1 - n)) = C (27)

In order to expand (27) in a power series of v, the coefficients of
which are obtainable from the frequency equation of free oscillation ex-
pressed as A(Xj) = 0, let

. =\, + iva, + 0(V? 28
3 3 3 v°) (28)
which results in

wax‘j - maj + wy
a, = - ; i = 1,2,4000,4 29
j 4)\3; j (29)

- 5 PN -
)\1,2 =+ (w)* ; ka,o. =1 i(w) (30)

The determinant A, when expanded in powers of v, is expressed as

é%— a + 0(v3) =0 (31)
1 3

~1 e

A= A()\j) + (iv)

]

O, )

>
~
>
[
g
il

2 (NHA) |, 4242 -
2222 (-2 ) O -a e R 200 )y A e

(A +h,)

A, +A)
+ AN Qg A ) (oA e + A (A ) (g Ay de 2T

(athy) + x:;\i()\a-xl)(x‘-xa)e()“ﬂ") (32)

+

242 - _
A2AZ (M) (-1 e
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After simplification of (31) and néglecting 0(v®) and higher, the following

expression is obtained:

(1 + Ch J/w cos Jw) + (iv) { % [1 + Ch /w cos Jw + JE (sh /w cos Jw

7

+ Ch /w sin./m)]4$ % (6 + i%) [6(1 + Ch J/w cos Jw) |

+ Jw(Sh /w cos /w - Ch /w sin \/'w)] } =0 (33)

It is remarkable that Eq. (33) is independent of #. In other words,
the so~called '"degree of nonconservativeness'" ¥ has no effect on this sys-
tem. 1In particular, for # = 0 (the twisting moment is always parallel to
the undeformed axis of the bar) and for # = 1 (the twisting moment is
always normal to the end cross-section), the governing stability equation is
the same.

To find the roots of Eq. (33), let /w = o + ivB, and obtain from (33),
after neglecting 0(v®) and higher orders, the following:

1 +Chacosa=0 ' (34)

and

(35)

B =+ o® (5 +_1L) _ M rsho cos o + Ch o sin a}
T4 ot 20 |Sh @ cos o - Ch & sin &

The roots of (34) are, of course, the roots that correspond to the
natural frequencies of an elastic cantilevered bar, Corresponding to any of
these roots, the term in brackets on the right-hand side of Eq. (35) is a
negative quantity. Thus, for the case of an elastic bar without external
damping (8§ =Y = 0), B is a positive quantity and, therefore, the solution

~iwr . . . . . , . .
e will denote exponentially increasing motion in time., Hence, for this

case the bar is unstable for any nonvanishing magnitude of the twisting

moment,
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4
. . o Y Sh o cos @ + Ch & sin
If the inequality, - - (6 + ;E) - M [Sh > cos & - Ch o sin a‘ < Q,

holds, then the system is stable, Therefore, the critical moment is ob-

tained by setting

4 .
-%(6_{_1{)_M[Shacosa+Chasmd]=0
o

Sh o cos ¢ - Ch & sin ¢
which yields

L&d4 + ¥)(Sh @ cos @ - Ch & sin @)

M=- 2(Sh & cos @ + Ch @ sin &)

For the smallest root of (34), o = 1,875, the above gives
M= 11,548 + 0.925¥v.
Thus it is seen that the critical moment depends linearly on both the in-

ternal and external damping.
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Fig. 1. Stability curves indicating dependence on v
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